Author: Jun-Yan Zhu∗, Taesung Park∗, Phillip Isola, Alexei A. Efros
Date: Mar 30, 2017
URL: https://arxiv.org/abs/1703.10593
$$\mathcal{L}_{GAN}(G, D_Y, X, Y) = \mathbb{E}_{y\sim p_{data}(y)}[\log D_Y(y)] + \mathbb{E}_{x\sim p_{data}(x)}[\log (1 - D_Y(G(x)))]$$
$$\mathcal{L}_{GAN}(F, D_X, Y, X) = \mathbb{E}_{x\sim p_{data}(x)}[\log D_X(x)] + \mathbb{E}_{y\sim p_{data}(y)}[\log (1 - D_x(F(y)))]$$
$$\mathcal{L}_{cyc}(G, F) = \mathbb{E}_{x\sim p_{data}(x)}[||F(G(x)) - x||_1 + \mathbb{E}_{y\sim p_{data}(y)}[||G(F(y)) - y||_1$$
$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda\mathcal{L}_{cyc}(G, F)$$
$$G^*,F^* = argmin_{G, F}argmax_{D_X, D_Y}\mathcal{L}(G, F, D_X, D_Y)$$