Author: Yunjey Choi, Youngjung Uh, Jaejun Yoo, Jung-Woo Ha
Date: Dec 21, 2019
URL: https://arxiv.org/abs/1711.09020
$$\mathcal{L}_{adv} = \mathbb{E}_x [\log D_{src}(x)] + \mathbb{E}_{x, c} [\log (1-D_{src}(G(x,c)))] - \lambda_{gp}\mathbb{E}_{\hat{x}}[(\Vert \nabla_{\hat{x}}D_{src}(\hat{x})\Vert_2 -1)^2]$$
$$\lambda_{gp} = 10$$
$$\mathcal{L}^r_{cls} = \mathbb{E}_{x, c'}[-\log D_{cls}(c'|x)]$$
$$\mathcal{L}^f_{cls} = \mathbb{E}_{x, c'}[-\log D_{cls}(c|G(x, c)]$$
$$\mathcal{L}_{rec} = \mathbb{E}_{x, c, c'}[\Vert x-G(G(x, c), c')\Vert_1]$$
$$\mathcal{L}_D = -\mathcal{L}_{adv} + \lambda_{cls}\mathcal{L}^r_{cls}$$
$$\mathcal{L}_G = \mathcal{L}_{adv} + \lambda_{cls}\mathcal{L}^f_{cls}+\lambda_{rec}\mathcal{L}_{rec}$$
$$\lambda_{cls} = 1, \lambda_{rec} = 10$$